Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
PLoS Comput Biol ; 19(1): e1010818, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2280349

RESUMEN

Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.


Asunto(s)
Acoplamiento Neurovascular , Humanos , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Neuronas/fisiología , Encéfalo/fisiología , Células Piramidales , Hemoglobinas , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos
2.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1001758

RESUMEN

Angiotensin converting enzyme 2 (ACE2) is a critical component of the compensatory axis of the renin angiotensin system. Alterations in ACE2 gene and protein expression, and activity mediated by A Disintegrin And Metalloprotease 17 (ADAM17), a member of the "A Disintegrin And Metalloprotease" (ADAM) family are implicated in several cardiovascular and neurodegenerative diseases. We previously reported that activation of kinin B1 receptor (B1R) in the brain increases neuroinflammation, oxidative stress and sympathoexcitation, leading to the development of neurogenic hypertension. We also showed evidence for ADAM17-mediated ACE2 shedding in neurons. However, whether kinin B1 receptor (B1R) activation has any role in altering ADAM17 activity and its effect on ACE2 shedding in neurons is not known. In this study, we tested the hypothesis that activation of B1R upregulates ADAM17 and results in ACE2 shedding in neurons. To test this hypothesis, we stimulated wild-type and B1R gene-deleted mouse neonatal primary hypothalamic neuronal cultures with a B1R-specific agonist and measured the activities of ADAM17 and ACE2 in neurons. B1R stimulation significantly increased ADAM17 activity and decreased ACE2 activity in wild-type neurons, while pretreatment with a B1R-specific antagonist, R715, reversed these changes. Stimulation with specific B1R agonist Lys-Des-Arg9-Bradykinin (LDABK) did not show any effect on ADAM17 or ACE2 activities in neurons with B1R gene deletion. These data suggest that B1R activation results in ADAM17-mediated ACE2 shedding in primary hypothalamic neurons. In addition, stimulation with high concentration of glutamate significantly increased B1R gene and protein expression, along with increased ADAM17 and decreased ACE2 activities in wild-type neurons. Pretreatment with B1R-specific antagonist R715 reversed these glutamate-induced effects suggesting that indeed B1R is involved in glutamate-mediated upregulation of ADAM17 activity and ACE2 shedding.


Asunto(s)
Proteína ADAM17/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Células Piramidales/metabolismo
3.
Bull Exp Biol Med ; 170(5): 649-653, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1159147

RESUMEN

Ivermectin (IVM) belongs to the class of macrocyclic lactones, which is used as an antiparasitic agent. At present, the researchers focus on possibility to use IVM in treatment of certain forms of cancer and viral diseases such as COVID-19. The mechanisms of IVM action are not clear. It is assumed that IVM affects chloride channels and increases cytoplasmic concentration of chloride. This study examines the effect of IVM on chloride currents induced by glycine (IGly). Experiments were carried out on isolated pyramidal neurons of the rat hippocampus with whole-cell patch clamp. A short-term (600 msec) application of IVM in a concentration of 10 µM induced a slow inward current, which persisted after washing the neurons. The low concentrations (0.1-1000 nM) of IVM did not induce any novel current, but it rapidly and reversibly reduced the peak amplitude and accelerated desensitization of IGly in a dose-dependent manner. The threshold concentrations of IVM sufficient to reduce peak amplitude of IGly and to accelerate desensitization of IGly were 100 nM and 0.1 nM, respectively. The study revealed a high sensitivity of neuronal glycine receptors to IVM.


Asunto(s)
Canales de Cloruro/efectos de los fármacos , Glicina/farmacología , Ivermectina/farmacología , Células Piramidales/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Antivirales/farmacología , Células Cultivadas , Canales de Cloruro/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/citología , Hipocampo/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptores de Glicina/efectos de los fármacos , Receptores de Glicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA